
Quick Review of Operations in

Modular Arithmetic

[
(a mod n) + (b mod n)

]
mod n = (a + b) mod n[

(a mod n)− (b mod n)
]

mod n = (a− b) mod n[
(a mod n)(b mod n)

]
mod n = (ab) mod n

(xa mod n)b mod n = xab mod n

xa+b+c+···+k mod n = (xaxb · · ·xk) mod n

=
[
(xa mod n)(xb mod n) · · · (xk mod n)

]
mod n

Residues and Primitive Elements

• Start with a ring Zn.

Definition: Z∗
n is the set of residues modulo n that are relatively prime to n (prime residue group).

That is, Z∗
n = {a : (a, n) = 1, a ∈ Zn}.

• Note: Z∗
n does not contain zero.

• Z∗
n forms an abelian group under multiplication. (Proof to follow)

• For n = p, p a prime, |Z∗
p| = p− 1 and Z∗

p is cyclic. (Proof to follow)

Claim: Z∗
n is an abelian group under multiplication.

Proof: That Z∗
n is abelian follows from the commutativity of the integers under multiplication. We

now prove that Z∗
n is a group under multiplication.



1. Closure – for a, b ∈ Z∗
n, (a, n) = (b, n) = 1. Clearly, (ab, n) = 1 and ab ∈ Z∗

n.

2. Associativity – follows from the integers under multiplication.

3. Identity – We know that 1 is the multiplicative identity for the integers, and 1 ∈ Z∗
n, since

(1, n) = 1.

4. Inverses – This requires the proof of the following theorem:

Theorem 1.1: The equivalence ax = b mod n has a unique solution x ∈ Zn for every b ∈ Zn

if and only if (a, n) = 1.

Proof: First assume (a, n) = 1.

We first show existence of a solution x:

• Fix b ∈ Zn

• Apply the following theorem:

Theorem 1.2: For integers a, n, (a, n) = 1 if and only if ∃ r, s ∈ Z such that

ar + ns = 1. (We will not prove this).

• Since (a, n) = 1, we can write ar + ns = 1 by this theorem.

• Thus arb + nsb = b, and (arb + nsb) mod n = b mod n

• This implies that (arb mod n) + (nsb mod n) = b mod n and arb = b mod n.

• Thus, x = rb is a solution of ax = b mod n.

Now suppose ax = b mod n has more than one solution (contradiction).

• Thus, ∃ distinct x1, x2 ∈ Zn with ax1 = b mod n and ax2 = b mod n.

• So ∃ r, s ∈ Z with ax1 = rn + b and ax2 = sn + b.

ax1 − rn = ax2 − sn

(r − s)n = (x1 − x2)a



• Since (a, n) = 1, all the factors of n must be found in x1 − x2, which implies that n

divides (x1 − x2).

• So x1 − x2 = 0 mod n =⇒ x1 = x2 mod n (contradiction)

• Thus, there is a unique solution to ax = b mod n.

Now assume ax = b mod n has a unique solution.

• Write ax = ns + b for some s ∈ Z. Thus ax− ns = b.

• Consider the case b = 1, and ax− ns = 1. We apply the following theorem:

Theorem 1.2: For integers a, n, (a, n) = 1 if and only if ∃ r, s ∈ Z such that ar + ns = 1.

• Since x, s are integers, we conclude that (a, n) = 1.

For the case b = 1, ax = 1 mod n implies ∃! x ∈ Zn where x is the inverse of a modulo n. It

now remains to show that the inverse of a, denoted x, is in Z∗
n.

• Consider ax = 1 mod n

ax = 1 mod n

ax = ns + 1, for some integer s

ax− ns = 1

• Apply Theorem 1.2 to conclude that (x, n) = 1.

• Thus x ∈ Z∗
n by definition.

Therefore, a has a multiplicative inverse in Z∗
n.

Thus, Z∗
n is a group under multiplication.

Consider the group Z∗
p for a prime p. Clearly, Z∗

p = {1, 2, . . . , p− 1}. We now prove Z∗
p is cyclic.

Case 1: Suppose |Z∗
p | = p− 1 = qs for some prime q.



• Since Z∗
p is a commutative ring with unity and is also a group under multiplication, we know

that every element in Z∗
p is a unit. This implies that Z∗

p is a field.

• Consider the element xn − 1 ∈ Zp[x]. By unique factorization in fields, we know that xn − 1

can be factored into at most n linear factors. Thus, there are at most n solutions to xn = 1.

• Consider an element a ∈ Z∗
p with largest possible order qr.

• The elements 1, a, a2, . . . , aqr−1 are all distinct, and each element solves the equation xqr
= 1.

• Since there are at most qr solutions to xqr
= 1, and there are qr such solutions in the set

{1, a, a2, . . . , aqr−1}, there are no other solutions to xqr
= 1.

• Let b ∈ Z∗
p be arbitrary with |b| = qt where t ≤ r. We see that bqr

= (bqt
)qr−t

= (1)qr−t
= 1.

• Since b solves the equation xqr
= 1, b = ai for some i.

• Thus, Z∗
p is cyclic.

Case 2: Let |Z∗
p | = qs1

1 · · · qsk
k where the qi are distinct primes.

• Since the group Z∗
p is abelian, all its Sylow subgroups Sq1 , . . . , Sqk

are normal. Also, since

the qi are distinct primes, Sqi
∩ Sqj

= {e} for i 6= j.

• Since the Sylow subgroups are normal and have trivial intersection, we can write

Z∗
p ≈ Sq1 × · · · × Sqk

.

• From Case (1), each Sqi
is cyclic; thus, Z∗

p ≈ Zq1 × · · · × Zqk
.

• Since all the qi are relatively prime, the group Sq1 × · · · × Sqk
is cyclic, with generator

b = (b1, b2, . . . , bk) for generators bi of Sqi
.

• Thus, the group Z∗
p is cyclic.



Since Z∗
p is cyclic, we can now define the following:

Definition: An element α that generates Z∗
p is a primitive element (root) modulo p.

Discrete Logarithms

• Let α be a primitive element for a prime p. Thus, α generates Z∗
p.

• Let b ∈ Z. Then we can write b = r mod p for 0 ≤ r ≤ p− 1.

• Since r ∈ Z∗
p, there exists a unique i such that b = αi mod p for 0 ≤ i ≤ p− 2.

Definition: We define i to be the index of b for the base α (mod p).

• The index is denoted as i = indα,p(b) or i = logα(b).

• The indices are often referred to as discrete logarithms, since they resemble logarithms both

in definition and in operation.



Diffie-Hellman Key Exchange

Background

Diffie-Hellman Key Exchange was developed by Whitfield Diffie and Martin Hellman at Stanford

in 1976. Their paper describing the idea was the first published public-key technique.

Setting Up the System

1. First, one user chooses two public elements: a prime p, and a primitive element of p, denoted

α.

2. Alice determines two new elements using p and α:

• She selects XA ∈ Z with XA < p.

• She calculates YA by YA = αXA mod p.

• XA remains private, while YA is public.

3. Similarly, Bob determines XB and YB:

• XB ∈ Z with XB < p

• YB = αXB mod p

• XB is private and YB is public.

4. They can then each generate the key, K:

• Alice calculates K = (YB)XA mod p

• Bob calculates K = (YA)XB mod p

5. They now each have the same key with which to encrypt messages.



Verification of the Equality of the Keys

Taking the key calculated by Alice and employing operations in modular arithmetic, we can write:

K = (YB)XA mod p

= (αXB mod p)XA mod p

= αXBXA mod p

= αXAXB mod p

= (αXA mod p)XB mod p

= (YA)XB mod p

Thus, the keys generated by Alice and Bob are equal.

Simple Example

1. Suppose we choose p = 17 and α = 3. We can verify that α is a primitive element modulo p

by determining that α generates the group Z∗
p.

2. Suppose Alice chooses XA = 7 and calculates YA = (3)7 mod 17 = 11.

3. Suppose Bob chooses XB = 12 and calculates YB = (3)12 mod 17 = 4.

4. The elements p = 17, α = 3, YA = 11 and YB = 4 are all public; thus, Alice obtains Bob’s YB

value and Bob obtains Alice’s YA value.

5. To generate the key:

• Alice calculates K = 47 mod 17 = 13.

• Bob calculates K = 1112 mod 17 = 13.



6. They can now use the key 13 to send an encrypted message.

Why is this key generation hard to break?

• The only public elements an opponent has to work with are p, α, YA, YB. To determine the

key, the opponent needs to calculate either XA or XB. Since YA = αXA mod p, we have that

XA = indα,p(YA). Thus, the opponent must calculate a discrete logarithm, which is

computationally difficult. Currently, the fastest known algorithm to do so is on the order of

e((ln p)1/3ln(ln p))2/3
, which becomes infeasible for large primes.

• The original algorithm published in 1976 is vulnerable only to a man-in-the-middle attack as

follows:

Suppose Alice was sending her YA value to Bob. An opponent, Eve, intercepts this message

and substitutes her own value for YA, which she then sends on to Bob. Since Bob has no

way of verifying that the message actually came from Alice, he unsuspectingly uses Eve’s

value to calculate his key. Diffie, along with several others, published a revised version of his

original algorithm in 1992 which defeats this attack by introducing user authentication.

• Today, the algorithm is used in systems such as Virtual Private Networks as the first stage

in a method of encryption. The public keys calculated by Diffie-Hellman are slow at

encryption, whereas private keys encrypt large blocks of text quickly. Thus, two users would

first calculate a public key using Diffie-Hellman, and then use that key to encrypt a private

key which they would then exchange. This private key would then be used to encrypt large

blocks of data.



The Euclidean Algorithms

Theorem 1.1: The equivalence ax = b mod n has a unique solution x ∈ Zn for every b ∈ Zn if

and only if (a, n) = 1. (previously proven)

Corollary: Following from the previous theorem, (a, n) = 1 if and only if ∃ a−1 ∈ Zn such that

a · a−1 = 1 mod n. That is, a has an inverse in Zn if and only if (a, n) = 1.

• a ∈ Z∗
n has a multiplicative inverse, since (a, n) = 1.

• Also, for integers m, n, ∃ c, d ∈ Z such that (m, n) = cm + dn.

Suppose (m, n) = 1

1 mod n = (cm + dn) mod n

= (cm mod n) + (dn mod n)

= cm mod n

= cm

• Note: c is the multiplicative inverse of m modulo n.

• The Euclidean Algorithm calculates the gcd of any two integers using the Division

Algorithm recursively.

• The Extended Euclidean Algorithm calculates the gcd, as well as the values of c and d

as defined above for any two integers.

The Extended Euclidean Algorithm

Given m,n ∈ Z, with m > n, we define the following elements recursively:

a0 = m, a1 = n, qk = bak−1

ak
c

ak = ak−2 − qk−1 · ak−1



x0 = 1, x1 = 0, y0 = 0, y1 = 1

xk = xk−2 − qk−1 · xk−1, yk = yk−2 − qk−1 · yk−1

Then, for every step k of the recursive process, ak = xka0 + yka1.

• This process ends when ak = 0 for some k.

• Then, ak−1 = (m,n) (Euclidean Algorithm)

• Also, (m,n) = xk−1m + yk−1n (Extended Euclidean Algorithm)

Proof of the Extended Euclidean Algorithm

We want to prove ak = xka0 + yka1, and we do this by induction on k:

• Let k = 0. Then,

x0a0 + y0a1 = 1 · a0 + 0 · a1

= a0

Thus, the statement holds for k = 0.

• Now assume the statement holds for all k with 0 ≤ k ≤ s. Consider the following:

xs+1a0 + ys+1a1 = (xs−1 − qs · xs)a0 + (ys−1 − qs · ys)a1,

= xs−1a0 − qsxsa0 + ys−1a1 − qsysa1,

= (xs−1a0 + ys−1a1)− qs(xsa0 + ysa1),

= as−1 − qsas, by definition,

= as+1 by definition.



Thus, the statement holds for k = s + 1.

By induction, we conclude that ak = xka0 + yka1 for all k.

An Example Using the Extended Euclidean Algorithm

Suppose we wish to find the multiplicative inverse of 25 mod 48. Note that (25, 48) = 1, which

allows us to find the inverse using the Extended Euclidean Algorithm.

• Let a0 = 48 and a1 = 25.

• Calculate q1 = b48
25
c = 1. Then a2 = a0 − q1a1 = 48− 1(25) = 23.

• The next step would then calculate q2 = b25
23
c = 1. Then a3 = 25− 1(23) = 2.

• The next step calculates q3 = b23
2
c = 11. Then a4 = 23− 11(2) = 1.

• Since we know that (25, 48) = 1, the process ends here. We now determine the x and y

values.

• Define x0 = 1, x1 = 0, y0 = 0, y1 = 1.

• Calculate x2 = x0 − q1x1 = 1− 1(0) = 1 and y2 = y0 − q1y1 = 0− 1(1) = −1.

• The next step calculates x3 = 0− 1(1) = −1 and y3 = 1− 1(−1) = 2.

• The next step calculates x4 = 1− 11(−1) = 12 and y4 = −1− 11(2) = 23. We stop here.

• Now we can write a4 = x4a0 + y4a1. Thus, 1 = 12(48) + (−23)(25).

• This implies that 1 mod 48 =
(
12(48) mod 48

)
+

(
(−23)(25) mod 48

)
.

• Thus, 1 mod48 = (−23)(25) mod 48, and −23, which is the same as 25 mod 48, is the

multiplicative inverse of 25 modulo 48.


